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Abstract
Background: Cirrhosis is a disease with multisystem involvement. It has been docu-
mented that patients with cirrhosis exhibit abnormal patterns of fluctuation in their 
body temperature. However, the clinical significance of this phenomenon is not well 
understood. The aim of this study was to determine if temperature variability analysis 
can predict survival in patients with cirrhosis.
Methods: Thirty eight inpatients with cirrhosis were enrolled in the study. Wireless 
temperature sensors were used to record patients’ proximal skin temperature for 
24 hr. The pattern of proximal temperature fluctuation was assessed using the ex-
tended Poincaré plot to measure short-term and long-term proximal temperature 
variability (PTV). Patients were followed up for 12 months, and information was 
collected on the occurrence of death/liver transplantation.
Results: During the follow-up period, 15 patients (39%) died or underwent transplan-
tation for hepatic decompensation. Basal proximal skin temperature absolute values 
were comparable in survivors and nonsurvivors. However, nonsurvivors showed a 
significant reduction in both short-term and long-term HRV indices. Cox regression 
analysis showed that both short-term and long-term PTV indices could predict sur-
vival in these patients. However, only measures of short-term PTV were shown to 
be independent of the severity of hepatic failure in predicting survival. Finally, the 
prognostic value of short-term PTV was also independent of heart rate variability, 
that is, a measure of autonomic dysfunction.
Conclusion: Changes in the pattern of patients’ temperature fluctuations, rather than 
their absolute values, hold key prognostic information, suggesting that impaired ther-
moregulation may play an important role in the pathophysiology of cirrhosis.
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1  |   INTRODUCTION

Liver cirrhosis is a global health burden, whereby more 
than 1 million deaths occur worldwide annually (Asrani, 
Devarbhavi, Eaton, & Kamath, 2019; Mokdad et al., 2014). 
It is the ultimate outcome of chronic repetitive injury and in-
flammation to the liver, resulting in fibrosis and the forma-
tion of regenerative nodules, which replace the normal liver 
architecture. Although the pathology commences within the 
liver, cirrhosis results in the functional impairment of other 
organs and systems. Therefore, extrahepatic manifestations 
of cirrhosis such as fluid retention, hepatic encephalopathy, 
hyperdynamic circulation, hepatorenal syndrome, and im-
mune dysfunction are common in patients with cirrhosis and 
are often the cause of hospital admission and mortality (Dong 
& Karvellas, 2019; Møller & Bendtsen, 2015).

Thermoregulation is a crucial homeostatic process, in-
volved in maintaining our core body temperature within a 
narrow range (~2°C) (Tansey, Johnson, & Johnson,  2015). 
However, analysis of our skin temperature reveals that it 
possesses inherent variability, which exhibits short-term 
(minute-to-minute) and long-term (circadian) changes, 
whose functional significance may be to assist in the opti-
mal control of our core body temperature in response to 
temperature changes in our external environment (Freeman 
& Linder,  1934; Papaioannou, Chouvarda, Maglaveras, & 
Pneumatikos, 2012; Satti et al., 2019). The short-term vari-
ability in our body temperature is also reflective of the di-
verse range of autonomic, endocrine, and metabolic stimuli 
feeding into the hypothalamus and may also be reflective of 
the activity of pyrogenic cytokines released during systemic 
inflammation (Palanisamy, 2012; Satti et  al.,  2019; Tansey 
et al., 2015).

A variety of different computational methods have been de-
veloped to analyze fluctuations in patients’ body temperature, 
as well as experimental models (Ahmed et al., 2010; Mani, 
Mazloom, Haddadian, & Montagnese,  2018; Papaioannou 
et al., 2012; Satti et al., 2019). It appears that body tempera-
ture fluctuation analysis can provide crucial information re-
garding the integrity of one's thermoregulatory system (Mani 
et al., 2018; Satti et al., 2019). Recent studies have indicated 
that the pattern of skin temperature fluctuations has a prog-
nostic value in critically ill patients (Cuesta et  al.,  2007; 
Papaioannou, Chouvarda, Maglaveras, Baltopoulos, & 
Pneumatikos, 2013; Papaioannou et al., 2012; Papaioannou, 
Sertaridou, Chouvarda, Kolios, & Pneumatikos, 2019; Varela 
et al., 2006). Our body temperature exhibits an inherent frac-
tal-like pattern in its fluctuations and hence exhibits a certain 
degree of “complexity,” such that alterations in the extent of 
this complexity are associated with poor prognosis in patients 
with multiple-organ failure (Varela et al., 2006). Furthermore, 
Papaioannou et al. revealed that metrics associated with 
measuring entropy (an index of irregularity and disorder) of 

patients’ skin temperature variability in a critically ill cohort 
of septic patients exhibited better prognostic accuracy than 
the SOFA (sequential organ failure assessment) score cur-
rently used in the clinical setting (Papaioannou et al., 2013).

Recent research has revealed that cirrhotic patients ex-
hibit a different pattern in their skin temperature fluctuations 
compared to healthy individuals (Garrido et al., 2017; Satti 
et al., 2019). In addition, Garrido et al. have proposed evi-
dence to suggest that cirrhotic patients manifest an abnormal 
circadian rhythm of temperature, and also exhibit substan-
tially altered proximal and distal skin temperature profiles 
(Garrido et al., 2017). This has been postulated to be due to 
systemic vasodilation, as a result of the extensive release of 
endogenous vasodilators or due to the autonomic dysfunc-
tion observed in patients with cirrhosis, thus highlighting that 
cirrhotic patients’ temperature variability profile does indeed 
change and is suggestive of altered thermoregulatory func-
tion, compared to healthy individuals. Mani et al. also revealed 
that cirrhotic rats exhibit greater entropy in their core body 
temperature, compared to control rats, possibly indicative of 
an increased amount of coupling and information processing 
in the thermoregulatory system (Mani et al., 2018). Based on 
these recent studies there is evidence to suggest that cirrho-
sis is associated with an altered pattern in the fluctuations of 
patients’ body temperature profile, which may indeed be cor-
related with multisystem involvement of cirrhosis. The mech-
anism of this phenomenon is currently not well understood. 
Moreover, it is not known whether temperature variability 
analysis has a prognostic value in the context of cirrhosis. 
Recent studies have shown that physiological markers such as 
heart rate variability (HRV) predict mortality in patients with 
cirrhosis, independently of other indices of liver failure such 
as the Child-Pugh and MELD (Model for End-Stage Liver 
Disease) scores (Bhogal et  al.,  2019; Satti et  al.,  2019). It 
appears that systemic inflammation is involved in the patho-
genesis of poor prognosis in cirrhosis (Clària et  al., 2016). 
Systemic inflammation is linked with reduced HRV (Bhogal 
et al., 2019; Haddadian et al., 2013) and altered body tem-
perature dynamics in chronic liver failure (Mani et al., 2018), 
so it is plausible to assess these physio-markers in prediction 
of poor prognosis in cirrhosis.

The present study was designed to determine whether 
measures of skin temperature variability can predict mortal-
ity in patients with cirrhosis and whether this is independent 
of the severity of liver failure and HRV.

2  |   METHODS

2.1  |  Ethics statement

This study was approved by the ethics committee of the 
University Hospital of Padova, (code: 4196/AO/17). Written 
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informed consent was provided by all patients involved in the 
study. Data were recorded according to the Data Protection 
Act.

2.2  |  Patients population and 
measurement of proximal skin temperature

38 patients with cirrhosis were admitted to Clinica Medica 5 
at the Padova University Hospital and were included in the 
study based on the inclusion and exclusion criteria. Their 
etiology was established through conventional clinical and 
pathological findings, and Child-Pugh and MELD scores 
were obtained. Inclusion criteria: hospital admission and 
signed informed consent. Exclusion criteria: Fever and anti-
biotic treatment in the preceding 3 days.

The mean age (±1 SD) in the study was 64.62 years ±   
10.4  years. The study took place between 06/04/2017 and 
02/02/2019 (date of the first temperature recording–last sur-
vey date after follow-up for survival analysis).

Three wireless temperature probes (iButtons, model no. 
DS1922L-F5, Maxim Integrated) were placed on the abdo-
men, intra-clavicular area, and mid-thigh of patients for 24 hr, 
as described by Longato et al. (Longato et  al.,  2017). The 
sampling rate of the data logger was 1 signal per 3 min. The 
following formula was used to calculate proximal temperature 
time series based on weighted average of the three proximal 
sensors placed on the patients as described earlier (Longato 
et al., 2017) (an example of which is represented in Figure 1):

Electrocardiograms (ECG) were recorded using a wire-
less probe (Actiwave Cardio, CamNtech) for 24  hr. The 
ECG sampling rate was 256 Hz. These ECG files were then 
subsequently used to calculate the HRV indices which are 

known physio-markers of predicting survival in patients with 
cirrhosis.

2.3  |  Patient follow-up

Patients were followed up for 12  months and information 
regarding the occurrence of death or liver transplantation 
was collected during this follow-up period. Patients who un-
derwent transplantation for hepatic failure were considered 
“nonsurvivors” on the day of transplantation (as they were in 
immediate need of a new liver and would not survive without 
it) while patients who underwent transplantation for hepato-
cellular carcinoma were censored on the date of transplanta-
tion. During the follow-up period if contact was lost from a 
patient before the pre-defined time (12 months) was up, the 
patient was also censored on the date of the latest available 
information. A flowchart of the procedures involved in the 
study is outlined in Figure 2.

2.4  |  Temperature variability (TV) analysis

The standard deviation of the proximal temperature (TProx) 
time series obtained from patients was calculated as an index 
of the total PTV. In addition, nonlinear analytical methods 
such as the extended Poincaré plot, sample entropy, de-
trended fluctuation analysis, and memory length were used to 
quantify skin temperature dynamics and ultimately the PTV 
indices. All algorithms were computed using the MATLAB 
programming language (MathWorks). The following is a 
brief description of the analytical methods mentioned above 
used to assess patients’ PTV. Further details of these meth-
ods are delved in further in other literature (Peng, Havlin, 
Stanley, & Goldberger, 1995; Richman & Moorman, 2000; 
Satti et al., 2019; Shirazi et al., 2013).

TProx =0.379 TAbdomen+0.262 TIntra − clavicular+0.359 TMid − thigh

F I G U R E  1   A sample of a 24-hr temperature recording using three proximal sensors (a) and their weighted average (b)
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2.4.1  |  The Poincaré plot

The Poincaré plot is a method used to visualize and quantify 
the correlation between two consecutive data points in a time 
series (Mani et al., 2009). As the dynamics of the fluctuations 
exhibited in skin temperature profiles possess long-term cor-
relation and thus memory, the extended Poincaré plot consid-
ers the correlation between sequential data points in a time 
series (i.e., Tn vs. Tn + k, where k [also known as the ‘lag’] can 
be any discrete point along the time series), rather than be-
tween two consecutive points (see Appendix 1 for a graphical 
representation). Thus, it provides more information about the 
dynamics of skin temperature fluctuations and can be used to 
estimate the short-term and long-term PTV possessed in the 
patients’ time series (Satti et al., 2019). Based on our prior 
knowledge, it appears that short-term PTV may reflect skin 
temperature variation probably due to myogenic and neuro-
genic inputs to peripheral microvasculature. Long-term-PTV 
may reflect fluctuation with a longer timescale within the 
24-hr circadian variation.

2.4.2  |  Sample entropy

Sample entropy is a tool that quantifies the degree of “disor-
der” and therefore the extent of irregularity present in a time 
series. This “irregularity” is the inverse of the amount of reg-
ularity present in the time series, and is quantified by calcu-
lating the negative logarithmic likelihood of the probability 
that points in each epoch (period of time) of window length 
“m” follow a similar structure and pattern, with tolerance “r” 
later on in the time series. In this study “m” was set at 2 and 
“r” at 0.2 as described by Richman and Moorman (Richman 
& Moorman, 2000). Sample entropy has been shown to re-
flect the complexity of a physiological time series (Richman 
& Moorman, 2000) and its reduction often indicates isolation 

of the regulatory components of a physiological system 
(Pincus, 1994).

2.4.3  |  Detrended fluctuation analysis (DFA)

Detrended fluctuation analysis (DFA) was carried out to 
study the fractal-like behavior of 24-hr temperature time se-
ries. In this analysis the data are split into boxes of various 
lengths (n) and this is plotted against the F(n), which is the in 
different scales (n). The slope of the resulting log–log graph 
is known as “scaling exponent” of α which indicates the type 
of fractal-like dynamics present in the physiological signal. 
DFA analysis has been used in physiological time series to 
show deviation from a random time series. The scaling expo-
nent (α) for a random time series is expected to be 0.5 (Peng 
et al., 1995). Thus, any divergence from this value toward 1 
indicates deviation from random fluctuations.

2.4.4  |  Memory length

The concept of memory length possessed within a physio-
logical time series was introduced by Shirazi et al. (Shirazi 
et  al.,  2013). Memory in a physiological time series is de-
fined as a time period, during which “rare” events within a 
physiological time series do not appear randomly and may 
be repeated for a certain length of time (Shirazi et al., 2013). 
This method is based on the calculation of the distribution of 
the time elapsed to observe a rare event (e.g., a jump or drop) 
in a time series (Ebadi, Shirazi, Mani, & Jafari, 2011;2011.). 
A jump in a temperature time series is a point along the 
time series that shows + 3σ degree rise in skin temperature, 
whereby σ is the standard deviation of temperature time se-
ries. Alternatively, a drop in the time series is a rare event 
defined as −3σ degree changes in skin temperature and 
can be used to calculate the memory length (−3σ) (Shirazi 
et al., 2013; Taghipour et al., 2016). It is harder to control a 
system with prolonged dependency on its past. Thus, prolon-
gation of memory is indirectly linked to a reduced control-
lability in a complex system (Mazloom, Shirazi, Hajizadeh, 
Dehpour, & Mani,  2014); therefore, memory length was 
computed for estimation of controllability of skin tempera-
ture variations in the present study.

2.5  |  Heart rate variability (HRV) analysis

The R peaks were detected using ECGs on patients and their 
subsequent inter-beat interval time series was then gener-
ated by using HRV analysis software (version 1.1.) (Pichot, 
Roche, Celle, Barthélémy, & Chouchou,  2016). Artifacts 
were removed from these 24-hr R–R interval time series 

F I G U R E  2   A flowchart of the procedures in the study
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using a filter embedded in the HRV analysis software. The 
following HRV indices were then computed using algo-
rithms written in MATLAB as described previously (Bhogal 
et al., 2019):

2.5.1  |  SDNN

Standard deviation of the R–R intervals, as a measure of the 
total HRV.

2.5.2  |  cSDNN

It is known that SDNN is inversely related to mean heart 
rate in healthy individuals (Monfredi et  al.,  2014). 
Therefore, some investigators normalize SDNN for heart 
rate using nonlinear models (Monfredi et  al.,  2014). The 
corrected SDNN (cSDNN) for patients’ heart rate was cal-
culated using the following formula (Monfredi 
et al., 2014):cSDNN=

SDNN

e−
Heart rate

58.8

.

2.5.3  |  SD1

Standard deviation perpendicular to the line of identity on the 
extended Poincaré plot quantifies the short-term variability 
exhibited in patients’ cardiac rhythm.

2.5.4  |  SD2

Standard deviation parallel to the line of identity on the ex-
tended Poincaré plot quantifies the long-term variability ex-
hibited in patients’ cardiac rhythm.

2.5.5  |  Spectral indices

Spectral analysis of the R–R interval time series was carried 
out by fast Fourier transformation. Three bands were iden-
tified: VLF: a very low-frequency component (0–0.04 Hz), 
LF: a low-frequency component (0.04–0.15 Hz), and HF: a 
high-frequency component (0.15–0.4 Hz).

2.5.6  |  Sample entropy

The degree of regularity and subsequently the degree of irreg-
ularity of the inter-beat interval time series were calculated 
as described above using the parameters m = 2 and r = 0.2, 
as recommended by Richman and Moorman (Richman & 
Moorman, 2000).

2.5.7  |  Fractal-like exponents

Cardiac cycles exhibit fractal-like dynamics which may be 
affected by systemic inflammation in cirrhosis (Haddadian 
et  al.,  2013). DFA was employed to calculate the scaling 
exponent (α) as described above. Since 24-hr R–R interval 
time series exhibit a cross-over phenomenon, α was sepa-
rately calculated for short windows (epochs of times with 
scale ≤ 16) and long windows (scale > 16). Thus, we cal-
culated two different values of α, α1, and α2, which reflect 
short-term and long-term fractal-like exponents, respectively 
(Peng et al., 1995).

2.6  |  Statistical analysis

TV or HRV indices of survivors and nonsurvivors were 
compared using either Student's t test or the nonparametric 
Mann–Whitney U-test according to the distribution of the 
variables involved. Data with two dependent variables (i.e., 
group [survivors vs. nonsurvivors] and lag (k)) were ana-
lyzed using the two-way ANOVA. A value of p < .05 was 
considered statistically significant.

2.6.1  |  Survival analysis

Cox proportional hazards regression was used for survival 
analysis. In this analysis, the Cox regression coefficient (β) 
and the hazard ratio (eβ) were calculated and the p-value for 
testing the null hypothesis (β = 0, hazard ratio = 1) was de-
termined using the Wald test. The bivariate Cox regression 
model was used to test if the prediction of mortality by PTV 
indices is independent of the severity of hepatic failure. The 
ROC curve was used to choose the best cut-off points with 
the highest sensitivity and specificity at predicting survival 
for the categorization of patients in the Kaplan–Meier graph 
based on their PTV indices. The log-rank (Mantel–Cox) test 
was used for survival analysis in the Kaplan–Meier graph. 
Statistical analysis was conducted using the SPSS pack-
age (IBM). Values of p <  .05 were considered statistically 
significant.

3  |   RESULTS

3.1  |  Participants

Following 24-hr skin temperature and ECG recordings, 38 
patients were followed up for 12  months. During the fol-
low-up period: 21 patients survived, 11 patients (29%) died, 
and six patients underwent transplantation of whom four 
underwent transplantation due to liver failure and 2 for the 
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treatment of hepatocellular carcinoma (Figure 2). The most 
common causes of hospitalization were hepatic encephalopa-
thy (15/38), tense ascites (10/38), and hepatorenal syndrome 
(5/38).

The general characteristics of the study population are 
presented in Table  1. There was no significant difference 
between the age and gender of survivors and nonsurvivors; 
however, both the MELD and Child-Pugh scores were sig-
nificantly different (p < .05).

3.2  |  Temperature variability data

Table  2 compares mean proximal temperature and PTV 
indices between survivors and nonsurvivors. The mean 
proximal temperature and standard deviation of the 24-hr 
temperature time series were similar in the surviving and 
nonsurviving patient groups. There was a significant re-
duction in the short-term (SD1 [k  =  2 and 3]) and long-
term PTV (SD2 [k = 1, 2 and 3]) in nonsurvivors compared 
to those who survived when the extended Poincaré plot 
was used for the quantification of patients’ PTV. As shown 
in Figure  3a, the analysis of the data's short-term varia-
bility (SD1) enabled us to distinguish between survivors 
and nonsurvivors (Fgroup = 54.97, p <  .0001) at steps (k) 
(Flag = 41.61, p < .0001); however, there was no interac-
tion between the two (group and steps, Finteraction = 0.902, 
p = .523). As shown in Figure 3b, the analysis of the data's 
long-term variability (SD2) also separated survivors from 
nonsurvivors. In fact, there was a significant difference be-
tween patient groups (Fgroup = 34.23, p <  .0001) but not 
between steps (k), meaning that the declination trend is not 
significant (Flag = 0.066, p = .999).

The sample entropy and scaling exponents (α) of the 
24-hr temperature time series were comparable in survivors 
and nonsurvivors (Table  2). However, the memory length 
for observing a drop in proximal skin temperature (memory 
length [−3σ]) was significantly prolonged in nonsurvivors in 

comparison with survivors (p < .01). There was however no 
significant difference in the memory length for observing a 
rise in proximal skin temperature (memory length [+3σ]) as 
shown in Table 2.

3.3  |  PTV predictors of mortality

The first part of the survival analysis was to determine which 
PTV parameters from Table 2 were linked with mortality ac-
cording to Cox regression analysis. From the variables listed 
in Table  3, it is evident that only four PTV indices could 
predict mortality. As expected, both the MELD and Child-
Pugh scores could predict mortality. Interestingly, indices of 
short-term PTV in the extended Poincaré plot (SD1 [k = 1, 
2 and 3]) came up as significant. These indices had hazard 
ratios below 1 which indicate that an increase in short-term 
temperature variability is associated with a reduction in mor-
tality and, conversely, a decrease in short-term temperature 
variability is associated with an increase in mortality. In ad-
dition, the memory length (−3σ) is shown to be a predictor 
of mortality (hazard ratio: 1.259, p <  .001, Table 3) which 
indicates that an increase in memory length is associated with 
higher patient mortality.

T A B L E  1   Mean characteristics of the study population

Survivors Nonsurvivors
p-
value

Number 23 15 —

Gender (male/female) 19/4 11/4 .637

Age 64.0 ± 2.3 65.0 ± 2.5 .768

MELD 17.82 ± 1.76 23.76 ± 1.98 .031

Child-Pugh 8.90 ± 0.43 10.54 ± 0.58 .022

Note: Data are expressed as mean ± SEM with the exception of gender which 
is expressed as the ratio of male/female. The level of significance was set at 
p < .05. Fisher's exact test was used to compare the genders.
Bold values represent when p < .05.

T A B L E  2   Mean proximal temperature characteristics and 
temperature variability indices of the study population

Survivors Nonsurvivors
p-
value

Number 23 15 —

Mean proximal 
temperature (°C)

35.05 ± 0.16 35.36 ± 0.19 .220

SD of proximal 
temperature (°C)

0.674 ± 0.071 0.504 ± 0.045 .065

SD1 (k = 1) (°C) 0.075 ± 0.005 0.062 ± 0.005 .068

SD1 (k = 2) (°C) 0.132 ± 0.008 0.108 ± 0.008 .049

SD1 (k = 3) (°C) 0.173 ± 0.011 0.138 ± 0.010 .026

SD2 (k = 1) (°C)) 0.949 ± 0.101 0.710 ± 0.053 .043

SD2 (k = 2) (°C) 0.941 ± 0.102 0.708 ± 0.050 .045

SD2 (k = 3) (°C) 0.933 ± 0.102 0.699 ± 0.050 .047

Sample Entropy 0.461 ± 0.031 0.448 ± 0.029 .774

Scaling exponent 
(α)

1.40 ± 0.02 1.37 ± 0.03 .383

Memory length 
(+3σ)

4.30 ± 0.14 6.12 ± 1.45 .230

Memory length 
(−3σ)

4.17 ± 0.08 6.73 ± 0.87 .010

Note: Data are expressed as mean ± SEM. The level of significance was set at 
p < .05.
Bold values represent when p < .05.
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3.4  |  Analysis of the independence of PTV 
parameters from markers of liver failure in 
predicting mortality

Using the four PTV indices that were significant in Cox re-
gression analysis, we combined these indices with a measure 
of disease severity (MELD or Child-Pugh) to determine if 

the ability of these PTV indices to predict mortality was in-
dependent of the severity of liver failure. Bivariate Cox re-
gression analysis showed that SD1 (k = 2), SD1 (k = 3), and 
memory length (−3σ) were independent of MELD in predict-
ing mortality in patients with cirrhosis (Table 4). This analy-
sis was also repeated with the Child-Pugh score and results 
were similar (Table 5).

F I G U R E  3   SD1 (a) and SD2 (b) derived from the extended Poincaré plot depicting the relationship between proximal temperature 
fluctuations (Tn versus Tn + k, whereby k = {1, 2, …, 10}) in those who survived with cirrhosis in comparison to those who did not (nonsurvivors). 
***p < .0001 based on the analysis of the effect of group (survivors vs. nonsurvivors) in a two-way ANOVA

T A B L E  3   Predictive effect of age, hepatic dysfunction, and 
temperature variability indices on one-year mortality

β SEM
Hazard 
ratio

p-
value

Age 0.007 0.024 1.007 .778

MELD 0.069 0.027 1.072 .009

Child-Pugh 0.303 0.122 1.354 .013

Mean proximal 
temperature

0.325 0.314 1.384 .301

SD of proximal 
temperature

−2.570 1.504 0.077 .088

SD1 (k = 1) −36.914 18.129 0.000 .041

SD1 (k = 2) −21.591 10.020 0.000 .031

SD1 (k = 3) −17.996 7.630 0.000 .018

SD2 (k = 1) −1.808 1.064 0.164 .089

SD2 (k = 2) −1.777 1.060 0.169 .094

SD2 (k = 3) −1.744 1.056 0.175 .099

Sample Entropy −0.885 1.784 0.413 .620

Scaling exponent 
(α)

−1.389 2.148 0.250 .519

Memory length 
(+3σ)

0.066 0.095 1.062 .181

Memory length 
(−3σ)

0.231 0.068 1.259 .001

Note: β is the coefficient of Cox regression analysis. SEM is the standard error 
of the mean of β, Hazard ratio = Exp (β) = eβ. The level of significance was set 
at p < .05 (bold values).

T A B L E  4   Independence of temperature variability indices 
from MELD score in predicting mortality in Cox bivariate regression 
analysis

β SEM
Hazard 
ratio

p-
value

SD1 (k = 1) −31.767 16.640 0.000 .056

SD1 (k = 2) −18.841 9.158 0.000 .040

SD1 (k = 3) −16.028 6.966 0.000 .021

Memory length 
(−3σ)

0.195 0.071 1.216 .006

Note: MELD score was significant in the analysis when compared with the other 
variables listed in Cox bivariate regression analysis. The level of significance 
was set at p < .05 (bold values)

T A B L E  5   Independence of temperature variability indices from 
Child-Pugh score in predicting mortality in Cox bivariate regression 
analysis

β SEM
Hazard 
ratio

p-
value

SD1 (k = 1) −33.028 16.944 0.000 .051

SD1 (k = 2) −19.505 9.331 0.000 .037

SD1 (k = 3) −16.682 7.123 0.000 .019

Memory length 
(−3σ)

0.204 0.068 1.226 .003

Note: Child-Pugh score was significant in the analysis when compared with 
the other variables listed in Cox bivariate regression analysis. The level of 
significance was set at p < .05 (bold values)
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3.5  |  Kaplan–Meier graphs based on 
PTV analysis

Kaplan–Meier graphs were plotted for the two PTV indices 
that showed clear independence from MELD and Child-Pugh: 
SD1 (k = 3) and memory length (−3σ). ROC curve analysis 
was then conducted to determine the cut-off value that pro-
vided the best possible trade-off of sensitivity and specificity 
(data are presented in Appendix 2). The cut-off values for 
SD1 (k = 3) and memory length (−3σ) were 0.14°C and 4.1, 
respectively. These cut-off values with the best sensitivity 
and specificity of these two parameters at predicting survival 
of patients with cirrhosis are depicted in the Kaplan–Meier 
graphs for the two variables, SD1 (k = 3) and memory length 
(−3σ) (Figure 4a,b respectively). The cut-off value for pa-
tients’ SD1 (k = 3) clearly discriminates between those with 
poor prognosis whereby SD1 (k  =  3) <0.14 compared to 
those with much better prognosis, whereby SD1 (k = 3) >0.14 
and shows a marked difference in their overall one-year sur-
vival 12 months post-temperature recording (Log-rank test, 
Chi square = 4.504, p =  .0338) (Figure 4a). Similarly, the 
cut-off value for patients’ memory length (−3σ) clearly dis-
criminates between those with poor prognosis whereby their 
memory length (−3σ) >4.1, compared to those with much 
better prognosis, whereby their memory length (−3σ) < 4.1 
and shows a marked difference in their overall one-year sur-
vival 12 months post-temperature recording (Log-rank test, 
Chi square = 4.481, p = .0343).

3.6  |  HRV and survival in patients with 
liver cirrhosis

24-hr ECG recordings were obtained and 24-hr HRV indices 
calculated. The basal 24-hr mean heart rate was comparable 
in survivors and nonsurvivors (76.6 ± 3.5 versus 72.9 ± 3.0, 
p  =  .459). Studying the HRV characteristics revealed that 
several parameters were significantly different between 
the two groups (Appendix 3). Total HRV indices (SDNN, 

cSDNN) were significantly lower in nonsurvivors (p < .05). 
As shown in Appendix 3, all indices of long-term HRV (SD2 
and VLF) exhibited a significant reduction in nonsurvivors. 
The long-term scaling exponent (α2) was also significantly 
lower in nonsurvivors (p = .004).

From the variables listed in Appendix 3, it became evident 
that most of them could predict mortality in Cox regression 
analysis (Table  6). We then used bivariate Cox regression 
analysis to determine if the ability of these HRV indices to 
predict mortality was independent of the severity of liver fail-
ure, as indicated by patients’ MELD and Child-Pugh score. 
Bivariate Cox regression analysis revealed that among the 
24-hr HRV indices, only the long-term scaling exponent (α2) 
was independent of MELD (Table 7). This analysis was also 
repeated with the Child-Pugh score and revealed that among 
the HRV indices tested; the long-term HRV indices: SD2, 
VLF, and long-term scaling exponent (α2) were all signifi-
cant predictors of mortality, independent of Child-Pugh score 
(data not shown).

As the long-term scaling exponent (α2) was the only 24-hr 
HRV index that showed independence from both the MELD 
and Child-Pugh score, a Kaplan–Meier graph was plotted 
for this index. As described earlier, ROC curve analysis 
was conducted to determine the cut-off value for α2 (1.07). 
Figure  5 depicts that the cut-off value for patients’ long-
term scaling exponent (α2) clearly discriminates between 
those with poor prognosis whereby α2 < 1.07 compared to 
those with much better prognosis, whereby α2  >  1.07 and 
shows a marked difference in their overall one-year survival 
12  months post-temperature recording (Log-rank test, Chi 
square = 13.08, p = .0003).

3.7  |  Analysis of the 
independence of PTV indices from HRV 
indices in predicting mortality

Bivariate Cox regression analysis was then conducted to 
determine whether the two PTV indices (SD1 [k = 3] and 

F I G U R E  4   Kaplan–Meier graphs 
illustrating how temperature variability 
indices can predict survival in patients with 
cirrhosis. Survival graphs depicting the 
overall survival of patients with cirrhosis 
above and below the cut-off value for SD1 
(k = 3) or memory length. (a) SD1 (k = 3) 
(Log-rank test, Chi square = 4.504, p < .05). 
(b) Memory length (−3σ) (Log-rank test, 
Chi square = 4.481, p < .05)
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memory length [−3σ]) as well as the HRV index, α2 (that 
were all independent of MELD and the Child-Pugh score) 
could themselves predict mortality independently of each 
other. Bivariate Cox regression analysis showed that SD1 
(k = 3) (a PTV index) and α2 (an HRV index) could predict 
mortality independently of each other (Table 8A). The same 
result was true for the PTV index, memory length (−3σ) and 
the HRV index, α2 (Table 8B). This suggests that the PTV 
and HRV indices can independently predict one-year mor-
tality in patients with cirrhosis, 12 months post-temperature 
recording.

4  |   DISCUSSION

This study was aimed at determining the prognostic value 
of skin temperature variability in patients with cirrhosis. We 
discovered that some PTV indices are predictors of survival 
in patients with cirrhosis. Specifically, the PTV indices quan-
tifying the memory length (−3σ) and short-term variability 
(SD1 [k  =  3]) exhibited in patients’ time series predicted 
mortality over the 12 months post-temperature recording, in-
dependently of the degree of liver dysfunction. Furthermore, 
the long-term scaling exponent (α2) HRV index could also 
predict survival in patients with cirrhosis independently of 
their MELD score. We then compared the prognostic value 
of these HRV and PTV indices in this patient population and 
found that although both physio-markers predict mortality, 
their prognostic values were independent. To the best of our 
knowledge these results are the first report, which make a 
link between the pattern of skin temperature fluctuations 
and the prognosis of patients within the context of chronic 
liver disease. These results also extend our knowledge about 
the potential application of physio-markers in the clini-
cal assessment of patients with cirrhosis (Mani et al., 2009; 
Montagnese, De Rui, et al., 2015; Montagnese, Jackson, & 
Morgan, 2007; Olesen et  al.,  2016). There has been an in-
terest in recent years in the application of HRV for moni-
toring patients with cirrhosis awaiting liver transplantation 
(Bhogal et  al.,  2019; Bhogal, Montagnese, & Mani,  2018; 
Chan, Yeh, & Sun, 2017; Jansen et al., 2019; Xiong, Faes, & 
Ch, 2017). However, this study reveals that HRV is not the 

T A B L E  6   Predictive effect of 24-hr heart rate variability (HRV) 
indices on one-year mortality in patients with cirrhosis

β SEM
Hazard 
ratio

p-
value

Mean heart rate 
(bpm)

−0.016 0.019 0.984 .410

SDNN −0.021 0.010 0.979 .028

cSDNN −0.007 0.003 0.993 .015

SD1 0.028 0.015 1.029 .056

SD2 −0.017 0.007 0.983 .016

VLF −0.000 0.000 0.999 .013

LF 0.001 0.000 1.001 .056

HF 0.001 0.001 1.001 .007

Sample entropy 0.983 0.541 2.671 .069

Short-term 
scaling 
exponent (α1)

−1.632 0.885 0.195 .065

Long-term 
scaling 
exponent (α2)

−4.509 1.559 0.011 .004

Note: β is the coefficient of Cox regression analysis. SEM is the standard error 
of the mean of β, Hazard ratio = Exp (β) = eβ. The level of significance was set 
at p < .05 (bold values)

T A B L E  7   Independence of heart rate variability (HRV) indices 
from MELD score in predicting mortality in Cox bivariate regression 
analysis

β SEM
Hazard 
ratio

p-
value

SDNN −0.014 0.010 0.986 .172

cSDNN −0.005 0.003 0.995 .120

SD2 −0.012 0.007 0.988 .107

VLF −0.000 0.000 0.999 .062

Long-term scaling 
exponent (α2)

−6.630 2.064 0.001 .001

Note: MELD score was significant in the analysis when compared with the other 
variables listed in Cox bivariate regression analysis. The level of significance 
was set at p < .05 (bold value).

F I G U R E  5   Kaplan–Meier graphs illustrating how the long-term 
scaling exponent (α2), a HRV index can predict survival in patients 
with cirrhosis. Survival graph depicting the overall survival for patients 
with cirrhosis above and below α2 cut off values (Log-rank test, Chi 
square = 13.08, p = .0003)
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only physio-marker that provides useful information about 
patient outcomes and our results suggest that the noninvasive 
assessment of patients’ thermoregulation using PTV analysis 
may add value in assessing the broader manifestations exhib-
ited in patients with cirrhosis.

Absolute values of temperature are not informative of 
the underlying processing of patients’ autonomic thermo-
regulatory circuits. Nevertheless, PTV analysis aims to elu-
cidate this by quantifying changes in the inherent dynamics 
of our thermoregulatory system. Historically, body tem-
perature has only been given significance in the context of 
fever; however, the integrity and performance of the ther-
moregulatory system can be affected in a multitude of dis-
eases (Mani et al., 2018; Papaioannou et al., 2012). Systemic 
disorders can affect the dynamics of heat loss and cellular 
heat production via multiple mechanisms such as vasodila-
tation (Charkoudian,  2010) and mitochondrial dysfunction 
(Argyropoulos & Harper, 2002), respectively. Furthermore, 
many systemic diseases such as liver cirrhosis have a signif-
icant impact on one's circadian rhythm (Blei & Zee, 1998; 
De Rui et  al.,  2015; Montagnese, Middleton, et al., 2015; 
Montagnese, Middleton, Mani, Skene, & Morgan, 2010) and 
24-hr body temperature fluctuations (Garrido et  al.,  2017). 
Alterations in skin temperature dynamics and its link with 
poor outcome is documented in acute clinical settings such 
as sepsis (Papaioannou et al., 2012, 2013, 2019). The novelty 
of our report is that in this study, PTV analysis was shown to 
predict survival in a chronic illness (cirrhosis), independently 
of standard prognostic indicators (MELD/Child-Pugh). None 
of the patients in the present study had fever. Additionally, 
the basal proximal skin temperature of both survivors and 
nonsurvivors was identical, further emphasizing the utility 
and value of analyzing the variability exhibited in patients’ 
temperature profiles, rather than measuring absolute val-
ues. Using the extended Poincaré analysis, Satti et al. had 

previously reported that hospitalized inpatients with cirrho-
sis exhibit lower short-term PTV compared with healthy 
volunteers and outpatients with cirrhosis (Satti et al., 2019). 
Our results expand on this finding and reveal that lower 
short-term PTV is indeed linked with poor prognosis. The 
exact mechanistic basis by which cirrhosis affects short-term 
PTV is unknown. Short-term PTV reflects skin temperature 
variation probably due to myogenic and neurogenic inputs 
to peripheral microvasculature. Cirrhosis is associated with 
hyperdynamic circulation and peripheral vasodilatation 
which potentially affect heat loss as well as metabolic rate 
(Bolognesi, Di Pascoli, Verardo, & Gatta,  2014; Müller, 
Böker, & Selberg, 1994; Müller et al., 1999). The extent of 
vasodilatation and its dynamics is not routinely measured 
while monitoring patients with cirrhosis. Nonetheless, it is 
reasonable to postulate that reduced short-term PTV may be 
the result of impaired autonomic control of peripheral vascu-
lature in patients with cirrhosis. Additionally, the short-term 
PTV in those that survived was greater than in those who 
exhibited a poor prognosis. This suggests that an increase 
in short-term PTV may be reflective of increased coupling 
of autonomic thermoregulatory circuits and hence a greater 
engagement of the control system in trying to combat the ex-
tensive heat loss due to the systemic vasodilation. Thus, im-
plying that a decrease in patients’ short-term PTV associated 
with poor prognosis may indeed be reflective of decreased 
coupling, and engagement of their autonomic thermoregula-
tory system. However, whether there's a causal link requires 
further research to validate. There are also other reasonable 
mechanisms attempting to explain why reduced short-term 
PTV is associated with poorer prognosis such as the hypoth-
esis of impaired cellular heat production dynamics in nonsur-
vivors, due to impaired mitochondrial function (Mansouri, 
Gattolliat, & Asselah,  2018; Moreau et  al.,  2020) or hor-
mone abnormalities exhibited in chronic liver disease (Patira, 

T A B L E  8   Independence of temperature variability (TV) from heart rate variability (HRV) indices in predicting mortality in Cox bivariate 
regression analysis.

β SEM Hazard ratio p-value

A

TV index

SD1 (k = 3) −18.921 8.807 0.000 .032

HRV index

Long-term scaling exponent (α2) −4.631 1.657 0.010 .005

B

TV index

Memory length (−3σ) 0.172 0.071 1.188 .015

HRV index

Long-term scaling exponent (α2) −4.057 1.667 0.017 .015

Bold values represent when p < .05.
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Salgiya, & Agrawal, 2019; Vincken, Reynaert, Schiettecatte, 
Kaufman, & Velkeniers,  2017). Systemic inflammation in 
patients with cirrhosis is energetically expensive and its met-
abolic costs may result in reduced heat production as well 
as multi-organ failure/poor prognosis in patients with liver 
failure (Moreau et al., 2020). Thus, reduced PTV may also 
indicate an impaired autonomic thermoregulatory response 
to an imbalance between heat production and heat loss in pa-
tients with poor prognosis. In the present study, we quanti-
fied the memory length of patients’ temperature time series 
in order to indirectly assess the controllability of these tem-
perature signals. A system is controllable if, with a choice 
of inputs, it can be driven from its initial state to a desired 
state within a finite time (Liu, Slotine, & Barabási,  2011). 
Intuitively, it is also harder to control a system with pro-
longed memory (Ghafari, Ghafari, Mani, & Raoufy,  2017; 
Mazloom et al., 2014). Controllability is reduced in a system 
with prolonged memory (Mazloom et al., 2014), thus the in-
creased memory length exhibited in the nonsurviving patient 
group may be indicative of the decreased controllability of 
the autonomic thermoregulatory system in those with poorer 
prognosis. Within this context, an increased memory length 
can be a disadvantage for an adaptive system, a phenomenon 
which is reflected in the prognostic value of memory length 
in our patient population.

Recent studies have shown that the addition of phys-
io-markers to MELD, that is, EEG or HRV exhibit greater 
prognostic capacity than MELD alone. This corroborates 
with our work, as our data introduce PTV as a novel phys-
io-marker for predicting mortality in patients with cirrhosis. 
Survival prediction is immensely important in patients with 
cirrhosis, as their prognosis is the basis of liver transplant 
allocation. Currently, the MELD score has been used in re-
cent years as a prognostic indicator in patients with cirrhosis. 
Physio-markers such as PTV are shown to be independent of 
MELD in predicting survival. Therefore, conventional scor-
ing systems such as MELD have indeed been now recognized 
as being limited in reflecting the multisystem nature of liver 
cirrhosis. Nonetheless, the addition of all plausibly effica-
cious physio-markers such as PTV indices as well as HRV 
indices used together with MELD may create an ideal index. 
Hence, this novel index may indeed be more reflective of 
the physiological network that is altered during chronic liver 
disease due to the multisystem manifestations exhibited in 
cirrhosis. However, further studies are required to delineate 
the potential efficacy of this novel index, especially with a 
larger sample size (i.e., for multivariate Cox regression anal-
ysis or Competing risk analysis) or the development of novel 
techniques using a network physiology approach may also 
be feasible (Bartsch, Liu, Bashan, & Ivanov, 2015; Bashan, 
Bartsch, Kantelhardt, Havlin, & Ivanov, 2012).

Reduced HRV, specifically long-term HRV indices (i.e., 
SD2) delineated from 10-min ECG recordings taken from 

patients with cirrhosis, has been found to predict survival 
(Bhogal et  al.,  2019; Satti et  al.,  2019). Our data corrobo-
rate previous reports such as this, as this study reveals that 
HRV calculated from 24-hr ECG recordings taken from 
cirrhotic patients also predicts mortality. Specifically, the 
long-term fractal exponent (α2) also indicative of long-term 
HRV calculated from these 24-hr ECG recordings exhibits 
a prognostic value independently of MELD or Child-Pugh. 
Furthermore, as the fluctuations of core body temperature 
affect one's cardiac rhythm, some investigators have postu-
lated that long-term HRV is due to inherent fluctuations of 
core body temperature (Fleisher et al., 1996). Firstly, this may 
plausibly be due to the rationalization that the heart fluctu-
ates faster than one's core body temperature. Secondly, in re-
sponse to an increase in core body temperature, cardiac ion 
channels are more active, and the diffusion rate of calcium 
is greater, resulting in increased action potential generation 
and hence heart rate. Therefore, short-term fluctuations in 
core body temperature may indeed be inducing a greater de-
gree of heart rate variability. In this study as both HRV and 
PTV predict mortality in our patients, we wonder whether or 
not reduced long-term HRV in cirrhosis reflects decreased 
short-term PTV. Although this hypothesis linking reduced 
short-term PTV with long-term HRV seems reasonable at 
first glance; bivariate Cox regression analysis revealed that 
these PTV and HRV indices are in fact independently asso-
ciated with poor prognosis. Autonomic nervous system has 
diverse and complex functions and there is no single index to 
measure its activity. Our report showed that HRV and PTV 
predict mortality independently of each other. This probably 
indicates that each index measures an important aspect of au-
tonomic control from a unique angle. It should be mentioned 
that we did not directly measure the variability exhibited 
in patients’ core body temperature, but, due to clinical fea-
sibility, only the variability possessed in patients’ proximal 
skin temperature was measured and subsequently quantified. 
Thus, future studies may indeed explore this area further by 
delving deeper into the relationship between core body PTV 
and HRV in patients with chronic liver disease.

The limitations of this study are that the sample size 
and the power of the study are relatively small. In addition, 
this study only applies to hospitalized patients with cirrho-
sis who exhibit manifestations of decompensation. Thus, in 
the future, a bigger sample size and inclusion of a diverse 
group of patients with cirrhosis will further validate the true 
prognostic capacity of PTV analysis. Even though patients 
with documented infection (e.g., treated with antibiotics) 
were excluded, inflammation due to bacterial translocation 
or subclinical infections may play a role in altered PTV in 
nonsurvivors. This can be studied in future investigations. 
Furthermore, the effect of patients’ cutaneous circulation 
was not studied, despite how one's peripheral skin tempera-
ture measurement reflects a culmination of factors, such as 
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the local blood-flow rate, the extent of subcutaneous tissue 
beneath the iButton, as well as sympathetic input affecting 
the vascular tone. Although this questions the validity of 
utilizing skin temperature measurements, this is nonetheless 
the most clinically feasible approach. This is because the in-
gestion of telemetric probes to estimate patients’ core body 
temperature is challenging for cirrhotic patients, as they may 
require immediate medical intervention or imaging during 
their hospitalization. We measured temperature variability 
only in a 24-hr period and do not know how PTV may change 
with time, severity of disease and development of compli-
cations. PTV appears to be a dynamic phenomenon and fu-
ture longitudinal studies with multiple/long-term temperature 
measurements can give more information on the true value of 
PTV monitoring in clinical practice.

To conclude, this study has revealed that proximal tem-
perature fluctuation analysis is an independent physiological 
marker that can predict survival in hospitalized patients with 
cirrhosis.
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APPENDIX 1
Extended Poincaré plots of patients’ proximal skin temperature time series. Poincaré plot used to study the correlation between 
Tn and Tn + k intervals is shown. (a) k = 1 (conventional Poincaré plot), (b) k = 3, (c) k = 10 (extended Poincaré plot). (d) 
Schematic diagram representing how the data points per extended Poincaré plot is derived.
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APPENDIX 2
ROC curves for MELD (a), extended SD1 (b) and memory length (c) in temperature variability analysis



16 of 16  |      BOTTARO et al.

APPENDIX 3
Mean 24-hr HRV characteristics of the study population.

Survivors Non-survivors p value

Mean heart rate 
(bpm)

76.6 ± 3.5 72.9 ± 3.0 .459

SDNN (ms) 86.79 ± 5.23 67.35 ± 6.46 .034

cSDNN 316.8 ± 22.6 236.0 ± 23.8 .020

SD1 (ms) 16.82 ± 2.79 26.25 ± 4.99 .112

SD2 (ms) 121.01 ± 8.37 90.25 ± 8.62 .016

VLF (ms2) 6,219 ± 852 3,315 ± 591 .011

LF (ms2) 269 ± 74 492 ± 209 .291

HF (ms2) 170 ± 49 420 ± 161 .154

Sample factory 0.640 ± 0.095 0.892 ± 0.117 .102

Short term 
scaling 
exponent (α1)

1.107 ± 0.062 0.940 ± 0.075 .093

Long term 
scaling 
exponent (α1)

1.142 ± 0.036 0.989 ± 0.032 .004

The data are expressed in mean ± SEM. Level of signifi-
cance set at p < .05.

APPENDIX 4
Mean proximal temperature during day (awake) and night 
(sleep) in survivors and nonsurvivors with cirrhosis. Data are 
expressed as mean ± standard deviation. A two-way ANOVA 
did not show any significant effect for group or Day/Night 
on mean proximal temperature (Fday/night = 0.285, p = .596, 
Fgroup = 3.091, p = .085).
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